动态规划
动态规划)与分治法相似,都是通过组合子问题的解来求解原问题。分治法将问题划分为互不相交的子问题,递归求解子问题,再将它们的解组合起来,求出原问题的解。与之相反,动态规划应用于子问题重叠的情况,即不同的子问题具有公共的子子问题(子问题的求解释递归进行的,将其划分为更小的子子问题)。这种情况下,动态规划对公共子子问题只求一次解,而分治法会反复求解公共子子问题。
贪心算法
从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到某算法中的某一步不能再继续前进时,算法停止。
该算法存在问题:
- 不能保证求得的最后解是最佳的;
- 不能用来求最大或最小解问题;
- 只能求满足某些约束条件的可行解的范围。
区别
动态规划算法:
1.全局最优解中一定包含某个局部最优解,但不一定包含前一个局部最优解,因此需要记录之前的所有最优解。
2.动态规划的关键是状态转移方程,即如何由以求出的局部最优解来推导全局最优解
3.边界条件:即最简单的,可以直接得出的局部最优解
贪心算法:
1.贪心算法中,作出的每步贪心决策都无法改变,因为贪心策略是由上一步的最优解推导下一步的最优解,而上一部之前的最优解则不作保留。
2.由(1)中的介绍,可以知道贪心法正确的条件是:每一步的最优解一定包含上一步的最优解。
区别:
1) 动态规划算法中,每步所做的选择往往依赖于相关子问题的解,因而只有在解出相关子问题时才能做出选择。而贪心算法,仅在当前状态下做出最好选择,即局部最优选择,然后再去解做出这个选择后产生的相应的子问题。
2) 动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常自顶向下的方式进行。