缓存穿透

什么是缓存穿透?

缓存穿透说简单点就是大量请求的 key 根本不存在于缓存中,导致请求直接到了数据库上,根本没有经过缓存这一层。举个例子:某个黑客故意制造我们缓存中不存在的 key 发起大量请求,导致大量请求落到数据库。

缓存穿透情况的处理流程是怎样的?

如下图所示,用户的请求最终都要跑到数据库中查询一遍。

缓存穿透

有哪些解决办法?

最基本的就是首先做好参数校验,一些不合法的参数请求直接抛出异常信息返回给客户端。比如查询的数据库 id 不能小于 0、传入的邮箱格式不对的时候直接返回错误消息给客户端等等。

1)缓存无效 key
如果缓存和数据库都查不到某个 key 的数据就写一个到 Redis 中去并设置过期时间,具体命令如下: SET key value EX 10086 。这种方式可以解决请求的 key 变化不频繁的情况,如果黑客恶意攻击,每次构建不同的请求 key,会导致 Redis 中缓存大量无效的 key 。很明显,这种方案并不能从根本上解决此问题。如果非要用这种方式来解决穿透问题的话,尽量将无效的 key 的过期时间设置短一点比如 1 分钟。

另外,这里多说一嘴,一般情况下我们是这样设计 key 的: 表名:列名:主键名:主键值 。

如果用 Java 代码展示的话,差不多是下面这样的:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public Object getObjectInclNullById(Integer id) {
// 从缓存中获取数据
Object cacheValue = cache.get(id);
// 缓存为空
if (cacheValue == null) {
// 从数据库中获取
Object storageValue = storage.get(key);
// 缓存空对象
cache.set(key, storageValue);
// 如果存储数据为空,需要设置一个过期时间(300秒)
if (storageValue == null) {
// 必须设置过期时间,否则有被攻击的风险
cache.expire(key, 60 * 5);
}
return storageValue;
}
return cacheValue;
}

2)布隆过滤器
布隆过滤器是一个非常神奇的数据结构,通过它我们可以非常方便地判断一个给定数据是否存在于海量数据中。我们需要的就是判断 key 是否合法,有没有感觉布隆过滤器就是我们想要找的那个“人”。

具体是这样做的:把所有可能存在的请求的值都存放在布隆过滤器中,当用户请求过来,先判断用户发来的请求的值是否存在于布隆过滤器中。不存在的话,直接返回请求参数错误信息给客户端,存在的话才会走下面的流程。

加入布隆过滤器之后的缓存处理流程图如下:

加入布隆过滤器

但是,需要注意的是布隆过滤器可能会存在误判的情况。总结来说就是: 布隆过滤器说某个元素存在,小概率会误判。布隆过滤器说某个元素不在,那么这个元素一定不在。


缓存击穿

什么是缓存击穿?

在平常高并发的系统中,大量的请求同时查询一个 key 时,此时这个key正好失效了,就会导致大量的请求都打到数据库上面去。这种现象我们称为缓存击穿。

带来的问题?

会造成某一时刻数据库请求量过大,压力剧增。

如何解决?

1. 设置热点数据永不过期
从缓存层面来看,没有设置过期时间,所以不会出现热点key过期后产生的问题。但是要注意在value中包含一个逻辑上的过期时间,然后另启一个线程,定期重建这些缓存。

2. 加互斥锁
分布式锁:使用分布式锁,保证对于每个key同时只有一 个线程去查询后端服务,其他线程没有获得分布式锁的权限,因此只需要等待即可。这种方式将高并发的压力转移到了分布式锁,因此对分布式锁的考验很大。

缓存雪崩

什么是缓存雪崩?

我发现缓存雪崩这名字起的有点意思,哈哈。

实际上,缓存雪崩描述的就是这样一个简单的场景:缓存在同一时间大面积的失效,后面的请求都直接落到了数据库上,造成数据库短时间内承受大量请求。 这就好比雪崩一样,摧枯拉朽之势,数据库的压力可想而知,可能直接就被这么多请求弄宕机了。

举个例子: 系统的缓存模块出了问题比如宕机导致不可用。造成系统的所有访问,都要走数据库。

还有一种缓存雪崩的场景是:有一些被大量访问数据(热点缓存)在某一时刻大面积失效,导致对应的请求直接落到了数据库上。 这样的情况,有下面几种解决办法:

举个例子 :秒杀开始 12 个小时之前,我们统一存放了一批商品到 Redis 中,设置的缓存过期时间也是 12 个小时,那么秒杀开始的时候,这些秒杀的商品的访问直接就失效了。导致的情况就是,相应的请求直接就落到了数据库上,就像雪崩一样可怕。

有哪些解决办法?

针对 Redis 服务不可用的情况:

  1. 采用 Redis 集群,避免单机出现问题整个缓存服务都没办法使用。
  2. 限流,避免同时处理大量的请求。

针对热点缓存失效的情况:

  1. 设置不同的失效时间比如随机设置缓存的失效时间。
  2. 缓存永不失效。

缓存预热

缓存预热如字面意思,当系统上线时,缓存内还没有数据,如果直接提供给用户使用,每个请求都会穿过缓存去访问底层数据库,如果并发大的话,很有可能在上线当天就会宕机,因此我们需要在上线前先将数据库内的热点数据缓存至Redis内再提供出去使用,这种操作就成为”缓存预热”。

解决思路:

1、直接写个缓存刷新页面,上线时手工操作下;

2、数据量不大,可以在项目启动的时候自动进行加载;

3、定时刷新缓存;

缓存更新

缓存服务(Redis)和数据服务(底层数据库)是相互独立且异构的系统,在更新缓存或更新数据的时候无法做到原子性的同时更新两边的数据,因此在并发读写或第二步操作异常时会遇到各种数据不一致的问题。如何解决并发场景下更新操作的双写一致是缓存系统的一个重要知识点。

第二步操作异常:缓存和数据的操作顺序中,第二个动作报错。如数据库被更新, 此时失效缓存的时候出错,缓存内数据仍是旧版本;

缓存更新的设计模式有四种

  • Cache aside:查询:先查缓存,缓存没有就查数据库,然后加载至缓存内;更新:先更新数据库,然后让缓存失效;或者先失效缓存然后更新数据库;

  • Read through:在查询操作中更新缓存,即当缓存失效时,Cache Aside 模式是由调用方负责把数据加载入缓存,而 Read Through 则用缓存服务自己来加载;

  • Write through:在更新数据时发生。当有数据更新的时候,如果没有命中缓存,直接更新数据库,然后返回。如果命中了缓存,则更新缓存,然后由缓存自己更新数据库;

  • Write behind caching:俗称write back,在更新数据的时候,只更新缓存,不更新数据库,缓存会异步地定时批量更新数据库;

Cache aside

  • 为了避免在并发场景下,多个请求同时更新同一个缓存导致脏数据,因此不能直接更新缓存而是另缓存失效。
  • 先更新数据库后失效缓存:并发场景下,推荐使用延迟失效(写请求完成后给缓存设置1s过期时间),在读请求缓存数据时若redis内已有该数据(其他写请求还未结束)则不更新。当redis内没有该数据的时候(其他写请求已令该缓存失效),读请求才会更新redis内的数据。这里的读请求缓存数据可以加上失效时间,以防第二步操作异常导致的不一致情况。
  • 先失效缓存后更新数据库:并发场景下,推荐使用延迟失效(写请求开始前给缓存设置1s过期时间),在写请求失效缓存时设置一个1s延迟时间,然后再去更新数据库的数据,此时其他读请求仍然可以读到缓存内的数据,当数据库端更新完成后,缓存内的数据已失效,之后的读请求会将数据库端最新的数据加载至缓存内保证缓存和数据库端数据一致性;在这种方案下,第二步操作异常不会引起数据不一致,例如设置了缓存1s后失效,然后在更新数据库时报错,即使缓存失效,之后的读请求仍然会把更新前的数据重新加载到缓存内。

推荐使用先失效缓存,后更新数据库,配合延迟失效来更新缓存的模式;

20210902102300

四种缓存更新模式的优缺点

  • Cache Aside:实现起来较简单,但需要维护两个数据存储,一个是缓存(Cache),一个是数据库(Repository);
  • Read/Write Through:只需要维护一个数据存储(缓存),但是实现起来要复杂一些;
  • Write Behind Caching:与Read/Write Through 类似,区别是Write Behind Caching的数据持久化操作是异步的,但是Read/Write Through 更新模式的数据持久化操作是同步的。优点是直接操作内存速度快,多次操作可以合并持久化到数据库。缺点是数据可能会丢失,例如系统断电等。

缓存本身就是通过牺牲强一致性来提高性能,因此使用缓存提升性能,就会有数据更新的延迟性。这就需要我们在评估需求和设计阶段根据实际场景去做权衡了。

缓存降级

缓存降级是指当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,即使是有损部分其他服务,仍然需要保证主服务可用。可以将其他次要服务的数据进行缓存降级,从而提升主服务的稳定性。

降级的目的是保证核心服务可用,即使是有损的。如去年双十一的时候淘宝购物车无法修改地址只能使用默认地址,这个服务就是被降级了,这里阿里保证了订单可以正常提交和付款,但修改地址的服务可以在服务器压力降低,并发量相对减少的时候再恢复。

降级可以根据实时的监控数据进行自动降级也可以配置开关人工降级。是否需要降级,哪些服务需要降级,在什么情况下再降级,取决于大家对于系统功能的取舍。

如何保证缓存和数据库数据的一致性?

如果更新数据库成功,而删除缓存这一步失败的情况的话,简单说两个解决方案:

  1. 缓存失效时间变短(不推荐,治标不治本): 我们让缓存数据的过期时间变短,这样的话缓存就会从数据库中加载数据。另外,这种解决办法对于先操作缓存后操作数据库的场景不适用。
  2. 增加 cache 更新重试机制(常用): 如果 cache 服务当前不可用导致缓存删除失败的话,我们就隔一段时间进行重试,重试次数可以自己定。如果多次重试还是失败的话,我们可以把当前更新失败的 key 存入队列中,等缓存服务可用之后,再将 缓存中对应的 key 删除即可。

参考

缓存穿透与缓存雪崩

缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级等问题

Redis系列 | 缓存穿透、击穿、雪崩、预热、更新、降级

评论